SOLUTION OF THE PERCUS-YEVICK EQUATIONS
AND THERMODYNAMIC FUNCTIONS OF A DENSE
GAS AT SUBCRITICAL TEMPERATURES
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The solution of the Percus-Yevick equation [1] for a Lennard-Jones potential

U = de (/2 — (a/)f] (0.1)

and for other powers in the repulsive potential is obtained. The calculations with the Lennard-Jones poten~

tial were performed in the density interval 0.048 < n* < 1.5 for temperatures T*= 1.2. The density and tem-
perature are expressed here in dimensionless units:

n* = nad, I* = Tle

where n is the number of particles in unit volume. The results are presented in tables expressing the de-
pendence of energy and pressure on temperature and density. A transition of the solution to the high-tem-
perature asymptotic approximation of Rowlinson [2, 8] is considered, and the applicability limits of the nu-
merical results obtained are discussed for high density.

One of the contemporary theoretical methods of determining the equation of state of dense media, in
which only data of the intermolecular potential are used as input data, is based on approximate solutions of
integral equations for the radial distribution function g, The Percus-Yevick and the so-called approximate
hypernetted chain equations lead to most satisfactory results in the sense of agreement with experimental
data and with direct computer calculations of the statistical sums of simplest gases and liquids.

The Percus-Yevick equation was solved numerically in a number of papers [4-12] for other values
of temperature and density and for any potential model. These calculations refer mainly to temperatures

close to the critical and do not cover the whole region of thermodynamic parameters which is of practical
interest.

1. Numerical Solution. The Percus-Yevick equation [7] can be represented in the form

2mn*
z

P =1+ (7 (5) € ¢) dsat (1.1)

A
z=r/a, P =4 (7% — 179

P () = g (z)expy
C(x) = z P (z) exp (—p — 1)
H (z) = zlP (z) exp (—p) — 1]

For each fixed x the integration is over the semiinfinite band A = A(x) bounded by the straight lines

s=t+z, s=—t+z, §>0 >0
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On passing from the point x to the point x +h this band is broadened by v2h and "shortened" by h/v2. Thus,
if the integral over the band A (%) in (1.1) is known, calculating the corresponding integral over the band
A(x+h) is reduced to evaluating integrals over a band of width h/v2. Each of these integrals can be ap-
proximately replaced (for small h) by one-dimensional integrals and evaluated by the trapezoidal rule. At
the same time the semiinfinite band Ax is replaced by a rectangle, formed by the straight lines mentioned
above and by the line s =—t+X. We thus obtain a finite system of algebraic equations which can be solved
for P(x) in a grid by Newton's method. The step of the grid was h=0.05,and X=7. For such values of h
and X the order of the algebraic system of equations was 140. A check showed that for h= 0.05 and X=7
the calculation of the radial distribution function and of the thermodynamic functions was independent of h
and X within a relative error of 1074,

The densities are given by the geometric~progression equation
n*=04¢"% ¢=1.2, i=1,2,...,20

For given values of density ni* +¢ and temperature T* we used as the zeroth iteration of the function
P(x) the already-found solution at the neighboring point n’i" onthe same isotherm T*, At the lowest-density
point the zeroth iteration was the corresponding solution for an ideal gas, i.e., g=1, P(x) =exp §. At each
iteration we calculated the compressibility coefficient Z =p*/ (n*T*) and the particle energy divided by tem-
perature Et = E* /T*, Here p* and E* are the dimensionless pressure and energy, related to the corre-
sponding dimensional quantities by

p*=pa®le, E*=1FE]e
The quantities Z and E* were calculated by the equations

0
. 2me* { dy
z=1—Tm- {3
(1]

g (x) 2%z

o
2nn*

E*+ =%+ 7% S Vg () 2%z
[1]

In these equations,for x = X= 7 we assumed g=1. The calculation of Z and E* does not depend, within
the accuracy limits of AZ/Z =AE*/E* = 1073, on a variation of X, if X= 7 (see also [10]). The iteration
process was terminated when the relative difference in Z and E¥ in one iteration was less than 1074, The
number of iterations necessary to achieve the given accuracy gradually increases with increasing density
and with decreasing temperature. At the highest densities for which the calculation was still performed
(n*=~ 1,5 or n*~ 1.3 depending on temperature) the convergence of iterations was quite slow. These points
are, obviously, close to the convergence limit of the iterational process.

The results of calculating 103.Z and 10%-E" at n*= 0.144 are given in Tables 1 and 2. For lower
densities,Z and ET are given within 1% by the expressions
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TABLE 3 Z =1 + 2n*B* 1 (2fsmn*)? C*

(1.2)
T+ E* = 3/, — 2/yn* (dB* | dIn T* + Yymn*dC* [ d1In T*)
n¥
6 8 10 12 “‘ 100 Here B* and C* are the reduced second and third
virial coefficients [13] for the potential (0.1). Toecal-
8 ‘%g gg :1))8 élf %g %i % culate Z and ET with an error less than 1% at any point
8:144 77 52 39 Zi % 2 in the region of thermodynamic parameters covered
.207 97 64 47 5 32 2 i i i
0o . o 0 | 4 A z l.oy the ‘ta.bles (e>'<clud1ng their last three columns), it
0.299 108 il 50 4 31 4 is sufficient to interpolate through three or four nearest
0.358 106 86 48 4 35 4 £ int
0,430 94 57 42 33 30 ¢  reierence poinis.
0.516 67 36 27 21 23 8 . ) .
0.619 9 3 4 9 13 9 The two~dimensional Table 1 together with Eqgs,
gms | Sl Rl X Bl S| % (1.2) contains the total information about thermody-
}.ggg —;gé ﬁgi ——gg —?’Z ——1% 52 namic functions of the system of particles considered
1m0 | 1 | —do7 | _—4s8 153 ﬁi }gg here, not possessing internal degrees of freedom. For

example, the reduced free energy F* = F/e canbe
calculated from

P — N:r*§ 1Z(¢, T%) — 1] t1dt - F, J¢

0

Here Fy is the free energy of an ideal gas, and N iz the number of particles.

2. Discussion of Results. Comparison with the Rowlinson Asymptotic Approximation. As could be
expected, at low densities the pressure and energy are close to those of an ideal gas (Z~1, Etx~ 3/2). At
increasing densities and low temperatures the role of attractive forces increases, and Z and E' decrease.
At still higher densities and temperatures the nonideality of the gas is mostly connected with the repulsive
part of the potential, and then Z >1 and E* >3/2. The general temperature and density dependence of the
thermodynamic functions is illustrated in Figs. 1 and 2. .

We notice that in the overlap region with the data in Tables 1 and 2 the values of Z and E¥ are in good
agreement with calculations by Watts [10] and other authors.

Rowlinson showed [2, 3] that at sufficiently high temperatures molecules with a Lennard-Jones poten-
tial (0.1) can be considered as solid spheres whose diameter d depends on temperature as follows:

d =a(4/T*yr2(1 + @(T*)/12] @.1)

The function &(T*) varies monotonically from —3.571 to 0.577 for T* varying from 2 to <, A detailed
table of ®(T*) is given in [14]. Having evaluated the effective diameter, one can use the equation of state
of solid spheres, obtained in [5] (see also [16]). This equation is of the form

i+y+oi—y 4 43
7= Ly = () @.2)

Rowlinson points out T* =12 as the lowest temperature at which the approximation (2.1) is valid. This
limit, however, does not reflect the sensitivity of the approximations (2.1), (2.2) to density. For a more def-
inite idea about the accuracy of the high-temperature asymptotic approximation and about the limit beyond
which the solution of Eq. (1.1) becomes too difficult one can use the simpler equations of state (2.1), (2.2).
Table 3 shows the difference 10%(Z,~2,)/Z,, where Z; and Z, are the data of Table 1 and the calculations
by Egs. 2.1), (2.2), respectively. The comparison shows, in particular, that the pressure caleculated in the
Rowlinson approximation agrees with the Percus-Yevick calculations within less than 10% for T* >10 and
n*<1, »

As noticed, the maximum tabulated value of the density nf\ . is restricted by the convergence rate
of the iteration. Already at pressures larger than (0.7-0.8) n;knax’ however, the Percus-Yevick equation
leads to unlikely results. This is seen by analyzing the density dependence of the coefficient y = 8(ZT*)/0T.
The values of y, calculated by the data of Table 1, increase monotonically for increasing densities, reaching
8-10 for the last two lines of the table at low temperatures. As is not hard to show, in the high-density limit
and for Lennard-Jones interactions,y is independent of density and is expressed as follows in terms of the
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TABLE 4 power of the potential: y = (m +2)/2. For m =12 we obtainy =7. From

available experimental data on liquid and solid compressibilities at high
n @ (1) n @ (n) pressures it also followsthatv usually doesnotexceed 6 and depends on
density rather weakly.
92.8 1.040 | 2.5 1.343 . X . . . .
77.2 1.048 | 10.4 1.426 In view of these considerations it seems that at high densities and
gé;i; };8?3 3{25 ig%_f—, low temperatures, in the region where the Percus-Yevick equation leads
44.7 1.085 6.12 | 1.832 to y > 6, it is not of practical interest and is a too coarse approximation
37.2 1.103 5.44 | 2.068 . ; . . .
31.0 1.125 4.95 | 2.389 to statistical properties. The values of Z and E in the regiony > 6 in
25.9 1.154 3.55 | 2.835 i
56 1185 Ses | 5an Tables 1 and 2 are marked by asterisks.
12:8 i%%; %;é?, é:éﬁé 3. A Repulsive Power Potential. One of the simplest potential

models, leading to a qualitatively correct thermodynamic description of
a real gas at high temperatures (T* > 1), is the repulsive power potential

U =48/$m (3.1)

The expressions in dimensionless variables of the thermodynamic functions of the system whose
particles interact according to (3.1) depend only on one variable [17]:

n = (79" n*

In particular

Here ¢ (1) is an unknown function of 1, depending also on the potential parameter m.

The functions @y, (1) can be found by solving the Percus-Yevick equation. In this work this was done
for m = 12. The resulfs of the calculations are given in Table 4, The highest density and lowest temperature
for which Eq. (1.1) leads to anomalously large v (see Sec. 2) correspond to values of  smaller than unity.
Such values of n are at the limit of the 7 region for which Table 4 was constructed.

In conclusion we notice that the calculations of thermodynamic functions at the selected potential pa-
rameters £ and a are directly applicable to monatomic media. After additional account of internal degrees
of freedom, however, these results can also be applied to other substances with molecules possessing suffi-
ciently high symmetry of valence shells and not undergoing significant change in structure in the transition
from gas to condensed phases, such as N,, O,, H,, and CH,.
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