
S O L U T I O N  O F  T H E  P E R C U S - Y E V I C K  E Q U A T I O N S  

A N D  T H E R M O D Y N A M I C  F U N C T I O N S  OF  A D E N S E  

GAS A T  S U B C R I T I C A L  T E M P E R A T U R E S  

A.  M. B e r e z h k o v s k i i ,  N.  M. K u z n e t s o v ,  
a n d  I .  V.  F r y a z i n o v  

UDC 536.71 

The solution of the Percus -Yevick  equation [1] for a Lennard-Jones  potential 

v = 4~ [(a!r) 12 -- (a/,pl (0,1) 

and for other powers in the repulsive potential is obtained. The calculations with the Lennard-Jones  poten- 
tial were per formed in the density interval 0.048 < n* < 1.5 for t empera tures  T* >- 1.2. The density and t em-  
pera ture  are  expressed here in dimensionless  units:  

n *  ~ n a  a, T *  = T / 8  

where n is the number of par t ic les  in unit volume. The resul ts  are  presented in tables expressing the de-  
pendence of energy and p r e s s u r e  on tempera ture  and density. A transi t ion of the solution to the h igh- tem-  
pera ture  asymptotic  approximation of Rowlinson [2, 3] is considered,  and the applicability limits of the nu- 
mer ica l  resul ts  obtained are  discussed for high density.  

One of the contemporary  theoret ical  methods of determining the equation of state of dense media, in 
which only data of the in termolecular  potential a re  used as input data, is based on approximate solutions of 
integral equations for the radial  distribution function g. The Pereus-Yevick  and the so=called approximate 
hypernetted chain equations lead to most sa t i s fac tory  resu l t s  in the sense  of agreement  with experimental  
data and with direct  computer calculations of the stat is t ical  sums of s implest  gases  and liquids. 

The Percus -Yevick  equation was solved numerica l ly  in a number of papers  [4-12] for other values 
of t empera ture  and density and for any potential model. These calculations r e fe r  mainly to t empera tures  
close to the cr i t ical  and do not cover the whole region of thermodynamic  pa rame te r s  which is of pract ica l  
interest .  

1. Numerica l  Solution~ The Percus -Yevick  equation [7] can be represented  in the form 

2nn* f P (x) = I + - - - 7 -  H (s) C (t) d~dt 
A 

x = r ~  a ,  , = 4 ( x  -1~ - x -~ )  

p (x) = g ( x ) e x p ,  

C(x) = x P ( x )  e x p ( - - ~ - -  t) 

H (x) = z i p  (x) exp (--r -- t1 

(1.1) 

For  each fixed x the integration is over the semiinfinite band A = A(X) bounded by the straight  lines 

s =  t •  s ~ - - t + x ,  s ~ O ,  t ~ O  
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On passing f rom the point x to the point x + h this band is broadened by ~f2 h and "shortened" by h / ~ 2 .  Thus, 
if the integral  over the band A (X) in (1.1) is known, calculating the corresponding integral over the band 
A (x+h) is reduced to evaluating integrals over a band of width h / ~ 2 .  Each of these integrals can be ap-  
proximately  replaced (for smal l  h) by one-dimensional  integrals and evaluated by the t rapezoidal  rule.  At 
the same time the semiinfinite band ~x is replaced by a rectangle,  formed by the s traight  lines mentioned 
above and by the line s = - t +  X. We thus obtain a finite sys tem of algebraic  equations which can be solved 
for P(x) in a grid by Newton's method. The step of the grid was h = 0.05,and X-- 7. For  such values of h 
and X the o rder  of the algebraic sys tem of equations was 140. A check showed that for h -  0.05 and X > - 7 
the calculation of the radial  distribution function and of the thermodynamic functions was independent of h 
and X within a relat ive e r r o r  of 10 -4. 

The densities are  given by the geomet r ic -progress ion  equation 

ni*=O.iq ~-a, q = l . 2 ,  i = t , 2 , . . . , 2 0  

For  given values of density n*+l and tempera ture  T* we used as the zeroth i teration of the function 
P(x) the already-found solution at the neighboring point n~ onthe same isotherm T*. At the lowest-density 
point the zeroth i teration was the corresponding solution for an ideal gas, i.e., g = 1, P(x) = exp ~. At each 
i teration we calculated the compressibi l i ty  coefficient Z =p*/(n'T*) and the part icle  energy divided by t em-  
pera ture  E += E*/T*.  Here p* and E* a re  the dimensionless p res su re  and energy,  related to the c o r r e -  
sponding dimensional quantities by 

p* = paS / 8, E* = E l 8  

The quantities Z and E + were calculated by the equations 

oo 

2gn* [~ d*  , , 
Z = t --"-5"~ ~ ~ g ix) x3dx 

0 

3 2~n* l E § = -~- + ~ *g (x) x~dx 
o 

In these equations, for x = X = 7 we assumed g = 1. The calculation of Z and E + does not depend, within 
the accuracy  limits of AZ/Z  =AE+/E  + = 10 -3, on a variat ion of X, if X -  > 7 (see also [10]). The i teration 
p rocess  was terminated when the relat ive difference in Z and E + in one i teration was less than 10 -4. The 
number of i terations necessa ry  to achieve the given accuracy  gradually increases  with increasing density 
and with decreasing tempera ture .  At the highest densities for which the calculation was still per formed 
(n* ~ 1.5 or  n* ~ 1.3 depending on temperature)  the convergence of i terations was quite slow. These points 
are,  obviously, close to the convergence limit of the i terational p rocess .  

The resul t s  of calculating 103. Z and 103-E + at n* > 0.144 are  given in Tables 1 and 2. For  lower 
densities, Z and E + are  given within 1% by the expressions 
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TABLE 3 

?2* 

0.048 
0.100 
0.t44 
0.207 
0.249 
0. 299 
0.358 
0.430 
0. 516 
0.6t9 
0. 743 
0.892 
t.070 
i.284 
1.54i 

30 
56 
77 
97 

106 
i08 
i06 
94 
67 
9 

-40 
t20 
19i 
236 
221 

i9 
30 
52 
64 
68 
7t 
66 
57 
36 
3 

--39 
--89 

--t3t 
--i6t 
--i07 

i4 
31 
39 
47 
5i 
50 
48 
42 
27 
4 

--30 
--62 
--92 
--89 
--i8 

T* 

I 

t3 
t6 
3t 
45 
4t 
42 
4t 
33 
2t 
9 

--t5 
--34 
--52 
--34 
+53 

i& 

l i  
2i 
26 
32 
36 
37 
35 
30 
23 
t3 

--t8 

t t t  

t00 

2 

i 
4 

8 
9 

t8 
32 
52 

i00 
t80 

Z = l + 2/snn*B* + (2/3nn*)2 C* (1.2) 

E + = 3/2 - -  2/8~n* (dB* / d In T* -~ 1/3nn*dC* / d In T*) 

Here  B* and C* a re  the reduced  second and th i rd  
v i r i a l  coef f ic ients  [13] for  the potent ia l  (0.1). T o c a l -  
cula te  Z and E + with an e r r o r  l e s s  than 1% at  anypoin t  
in the reg ion  of the rmodynamic  p a r a m e t e r s  covered  
by the t ab les  (excluding the i r  l a s t  th ree  columns),  it  
is suff icient  to in te rpo la te  through th ree  or  four n e a r e s t  
r e f e r e n c e  points .  

The two-d imens iona l  Table  i together  with Eqs.  
(1.2) contains  the to ta l  informat ion  about t h e r m o d y -  
namic  functions of the sys t em of p a r t i c l e s  cons ide red  
he re ,  not p o s s e s s i n g  in te rna l  deg rees  of f r eedom.  F o r  
example ,  the reduced  f ree  energy  F* = F / e  can be 
ca lcu la ted  f rom 

n* 

F* = NT* f [Z(t, T*) - -  i I t-ldt + F o / e 
0 

Here  F 0 is  the f ree  energy  of an ideal  gas,  and N is the number  of p a r t i c l e s .  

2. Discuss ion  of Resu l t s .  Compar i son  with the Rowlinson Asympto t ic  Approx imat ion .  As could be 
expected,  at  low dens i t i e s  the p r e s s u r e  and energy a r e  c lose  to those of an idea l  gas  (Z ~ 1, E+~ 3/2). At 
i nc reas ing  dens i t i e s  and low t e m p e r a t u r e s  the r o l e  of a t t r ac t i ve  fo r ce s  i n c r e a s e s ,  and Z and E + d e c r e a s e .  
At  s t i l l  higher  dens i t i e s  and t e m p e r a t u r e s  the nonideal i ty  of the gas is  most ly  connected with the r epu l s ive  
p a r t  of the potent ia l ,  and then Z >1 and E + >s/2. The genera l  t e m p e r a t u r e  and densi ty  dependence of the 
the rmodynamic  functions is i l l u s t r a t e d  in F i g s .  1 and 2. 

We notice that  in the ove r l ap  reg ion  with the data in Tables  1 and 2 the va lues  of Z and E + a re  in good 
ag reemen t  with ca lcula t ions  by Watts  [10] and o ther  au thors .  

Rowlinson showed [2, 3] that  at  suff ic ient ly  high t e m p e r a t u r e s  molecu les  with a Le nna r d - J ones  po ten-  
t i a l  (0.1) can be cons ide red  as  sol id  sphe re s  whose d i a m e t e r  d depends on t e m p e r a t u r e  as  fol lows:  

d = a (4 / T*) i ~  [t + q3(T,) / 121 (2.1) 

The function ~(T*) v a r i e s  monotonical ly  f rom -3 .571  to 0.577 f o r  T* vary ing  f rom 2 to ~ .  A de ta i l ed  
table  of 6(T*) is given in [14]. Having evaluated  the effect ive  d i a m e t e r ,  one can use the equation of s ta te  
of sol id  sphe res ,  obtained in [5] (see also  [16]). This  equation is of the fo rm 

Z =  I+Y+Y~--~ i ( d ) 3  
( i  - -  y ) ,  , y = ~ ~ n *  ( 2 , 2 )  

Rowlinson points  out T* = 12 as the lowest  t e m p e r a t u r e  at  which the approx imat ion  (2.1) is val id .  This  
l imi t ,  however ,  does not r e f l e c t  the sens i t iv i ty  of the approx ima t ions  (2.1), (2.2) to densi ty .  F o r  a more  def-  
inite idea  about the a c c u r a c y  of the h i g h - t e m p e r a ~ r e  a sympto t i c  approx imat ion  and about the l imi t  beyond 
which the solut ion of Eq. (1.1) becomes  too diff icul t  one can use the s i m p l e r  equations of s ta te  {2ol), (2.2). 
Table  3 shows the d i f ference  1 0 S ( Z 2 - Z l ) / Z l ,  where  Z 1 and Z 2 a r e  the data of Table  1 and the ca lcu la t ions  
by Eqs.  (2.1), (2.2), r e s p e c t i v e l y .  The compar i son  shows, in p a r t i c u l a r ,  that  the p r e s s u r e  ca lcu la ted  in the 
Rowlinson approximat ion  a g r e e s  with the P e r c u s - Y e v i c k  ca lcu la t ions  within l e s s  than 10% for T* >10 and 

n*< 1. 

As not iced,  the maximum tabula ted  value of the dens i ty  n * a x  is r e s t r i c t e d  by the convergence  r a t e  
of the i t e ra t ion .  A l r eady  at  p r e s s u r e s  l a r g e r  than (0.7-0.8) nmax*, however ,  the P e r c u s - Y e v i c k  equation 
leads  to unl ikely r e s u l t s .  This is seen  by analyzing the dens i ty  dependence of the coeff ic ient  y = a (ZT*) /aT.  
The values  of Y, ca lcu la ted  by the data of Table  1, i n c r e a s e  monotonical ly  for  i nc reas ing  dens i t i e s ,  r each ing  
8-10 for  the l as t  two l ines  of the tab le  at  low t e m p e r a t u r e s .  As is not ha rd  to show, in the high-densi ty  l imi t  
and for  Lenna rd - Jones  in t e rac t ions ,y  is independent os dens i ty  and is e x p r e s s e d  as  follows in t e r m s  of the 
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TABLE 4 

~ (~) ~ ~ (~) 

92.8 
77.2 
64.4 
53.6 
44.7 
37.2 
31.0 
25.9 
2t .6 
48.0 
i4.9 

t.040 
t.048 
t .058 
1.070 
t .085 
t . t03 
t .t25 
t .t51 
1.185 
t.227 
1.278 

12.5 
10.4 
8.8 
7.35 
6.12 
5.tt 
4.25 
3.55 
2.96 
2.46 
2.05 

1. 343 
1.426 
t.52t 
1.655 
1.832 
2.068 
2.389 
2.835 
3.471 
4.401 
5.806 

power of the potential : Y = (m+2) /2 .  For  m = 12 we obtain T = 7. F r o m  
available experimental  data on liquid and solid compress ibi l i t ies  at high 
p r e s su re s  it also follows t harT usually does notexceed 6 and depends on 
density ra ther  weakly. 

In view of these considerat ions it seems that at high densit ies and 
low tempera tures ,  in the region where the Percus -Yevick  equation leads 
to T > 6, it is not of prac t ica l  interest  and is a too coarse  approximation 
to s tat is t ical  proper t ies .  The values of Z and E in the region T > 6 in 
Tables 1 and 2 are  marked by as ter i sks .  

3. A Repulsive Power Potential.  One of the s implest  potential 
models, leading to a qualitatively co r r ec t  thermodynamic descript ion of 
a rea l  gas at high tempera tures  (T* >> 1), is the repulsive power potential 

U = 48 / z '~ (3.1) 

The expressions in dimensionless variables  of the thermodynamic functions of the sys tem whose 
par t ic les  interact  according to (3.1) depend only on one variable [17]: 

= ( r * P / ~  / a*  

In par t icular  

E + = 3  

z = ~ (7) 

2 " "-}- --~- Tm (n) 

Here ~m (7) is an unknown function of 7, depending also on the potential pa rame te r  m. 

The functions ~a m (7) can be found by solving the Pereus-Yeviek  equation. In this work this was done 
for m = 12. The resul ts  of the calculations are  given in Table 4. The highest density and lowest tempera ture  
for which Eq. (1.1) leads to anomalously large T (see Sec. 2) correspond to values of ~ smal ler  than unity. 
Such values of ~ are  at the limit of the ~ region for which Table 4 was constructed.  

In conclusion we notice tha t  the calculations of thermodynamic functions at the selected potential pa-  
r a m e t e r s  e and a are  d i rec t ly  applicable to monatomic media. After additional account of internal degrees  
of f reedom, however, these resu l t s  can also be applied to other substances with molecules possess ing  suffi- 
ciently high symmet ry  of valence shells and not undergoing significant change in s t ructure  in the t ransi t ion 
from gas to condensed phases,  such as N2, 02, H2, and CH~~ 

L I T E R A T U R E  C I T E D  

1. J . K .  Percus  and J.  Yevick, "Analysis of c lass ica l  s tat is t ical  mechanics by means of collective co-  
ordinates ,"  Phys. Rev.,  110, No. 11 (1958). 

2. J . S .  Rowlinson, "An equation of state of gases  at high t empera tu res  and densit ies,"  Mol. Phys. ,  7, 
No. 4 (1964). 

3. J . S .  Rowlinson, "The stat is t ical  mechanics of sys tems with steep intermolecular  potentials," MOlo 
Phys. ,  8, No. 2 (1964). 

4. A. Broyles ,  S. U. Chung, and H. L. Sahlin, "Comparison of radial  distribution functions f rom integral 
equations and Monte Carlo,"  J. Chem. Phys. ,  37, No. 10 (1962). 

5. A . A .  Khan, "Radial distribution functions of fluid argon," Phys. Rev., 134, No. 2A (1964). 
6. A . A .  Khan, "Radial distribution functions of liquid krypton," Phys.  Rev., 136, No. 5A (1964). 
7. A . A .  Khan and A. A. Broyles ,  "Interatomic potentials and x- ray-d i f f rac t ion  intensities for liquid 

xenon," J.  Chem. Phys. ,  43, No. 1 (1965). 
8. D. Levesque, "Pereus-Yevick,  hyperchain, and Born-Green  equations for a c lass ica l  fluid," Physica,  

3_22, No. 11, 12 (1966). 
9. G . J .  Throop and R. J. Bearman,  "The pair  corre la t ion function and thermodynamic proper t ies  of the 

Lermard-Jones 6-12 potential and the Percus-Yevick  equation," Physica,  32, No. 7 {1966). 
10. R . O .  Watts, "Percus-Yevick  equation applied to Lennard-Jones  fluid," J.  Chem. Phys. ,  48, No. 1 

(1968). 

2 3 2  



11. J . C .  Cure and So E. B a b l , " P e r c u s - Y e v i c k i s o t h e r m f o r  the e/vp-6 in te rmolecu la r  potent ia l ,"  Jo Chem. 
Phys. ,  4__88, No. 5 (1968). 

12. F. Mandel, R. J .  Bearman ,  and M. Y. Bearman ,  "Numer ica l  solut ionof  the P e r c u s - Y e v i c k  equation for 
the Lennard - Jones  6-12 and hard sphere  potent ia ls ,"  J .  Chem. Phys. ,  5_22, No. 7 (1970). 

13. J .  Hi r schfe lder ,  C. Cur t i s s ,  and R. B. Bird,  Molecular  Theory  of Gases  and Liquids, Chapman and 
Hall (1954). 

14. R. Chert, D. Henderson,  and S. Davison,  "Quantum cor rec t ions  to the equation of s tate  of gases  a th igh 
t e m p e r a t u r e s  and dens i t ies , "  P roc .  Nat. Acad. Sci .U. S~ 54, No. 6 (1965). 

15. N . F .  Carnahan and K. E. Starling, "Equation of s tate  for  nonat t rac t ing r igid spheres ,  ~ J .  Chem. 
Phys., 5_i_i, No. 2 (1969). 

16. N.F. Carnahan and K. E. Starling, "Thermodynamic properties of a rigid sphere fluid," J, Chem. 
Phys., 53, No. 2 (1970). 

17. L.D. Landau and E. M. Lifshits, Statistical Physics, Pergamon Press (1969). 

233 


